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Structural ordering and spectral properties of 
smectic A with biaxial solute molecules 

by E. M. AVERYANOV* and A. N. PRIMAK 
L. V. Kirensky Institute of Physics, U.S.S.R. Academy of Sciences, 

Siberian Branch, Krasnoyarsk 660036, U.S.S.R. 

(Received 19 April 1990; accepted 29 March 1991) 

The influence of (i) orientational-translational ordering of solvent and solute 
molecules, (ii) anisotropic intermolecular solutesolvent interactions and (iii) the 
features of the electronic structure of biaxial solute molecules dissolved in a smectic 
A phase on the spectral position of polarized bands of a solute electronic absorption 
has been investigated. Equations for the positional-orientational pseudopotential 
in a pure smectic A doped with biaxial solute molecules have been obtained within 
the framework of the molecular statistical approach. The question about the 
correlation of contributions of partial orientational and translational molecular 
ordering to the spectral properties of a molecular system has been answered. 

1. Introduction 
The spectral properties of anisotropic media with partial orientational- 

translational ordering are of interest for the development of optical recording devices. 
Liquid crystals with a wide range of thermodynamically stable phases and a 
combination of different types of orientational and translational molecular ordering 
are convenient models of such media. In consequence, the influence of anisotropic 
intermolecular interactions and the structural features of smectics on the spectral 
properties of these systems is a significant problem. 

The spectral features of the electronic absorption of uniaxial solute molecules 
dissolved in a smectic A phase have been studied theoretically [l]. However solute 
molecules of practical interest ( e g  condensed ring systems) have a biaxial shape, which 
can change from lath-like (acenes) to disc-like (porphins, porphyrins, phthalocyanines). 
In consequence, the case of biaxial solute molecules requires special consideration in 
relation to both the molecular electronic structure (the orientation of the transition 
moments) and the orientational-translational statistics in a smectic phase, since the 
molecular biaxiality modifies qualitatively the anisotropic intermolecular interaction 
and hence the molecular pseudopotential in nematic and smectic phases. 

Here, we study the influence of anisotropic intermolecular solute-solvent interac- 
tions, orientational-translational ordering of the solvent and solute as well as the 
features of the electronic structure of biaxial solute molecules in a smectic A on the 
position of polarized bands in the solute electronic absorption. General properties of 
the structural parameters characterizing the ordering and the orientational- 
translational statistics of biaxial solute molecules in a smectic A a,re investigated in 6 2. 
Equations for the positional-orientational pseudopotential in a smectic A formed of 
biaxial molecules and for biaxial solutes in a smectic A formed of uniaxial and biaxial 
molecules are developed in 6 3. Section 4 is concerned with translational-orientational 
effects on the spectral position of polarized bands of the solute electronic absorption. 

* Author for correspondence. 
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556 E. M. Averyanov and A. N. Primak 

2. The orientational-translational statistics for the solute dissolved in a smectic A 
A theory for the spectral properties of a partially aligned molecular media has to be 

based on a molecular statistical theory of these objects and to use the structural 
parameters of the system, which can be determined directly or indirectly from 
experiment. We shall consider smectic A phases formed of non-chiral molecules and 
solute molecules with CZv, D, or D,, symmetry. The solute concentration is considered 
to be so low that solute-solute interactions can be ignored. 

The frame (x, y ,z,) of a solute molecule is selected to diagonalize the Saupe ordering 
matrix 

Here 0, is the angle made by the ith axis of the molecular frame with the director r and 
the brackets (. . .) denote a statistical average. The axis z corresponds to the maximum 
value of the principal components Sii. For flat molecules with C,, and D,, symmetry 
the x1 axis is in the plane of the molecule and the y ,  axis is perpendicular to this plane. 
The orientation of the director in the frame (x,y,z,) is determined by the polar angle 
8=0,, and the azimuthal angle I) made by the x1 axis with the projection of r to the 
plane x,y,. Orientational-translational ordering of the solute is characterized by the 
order parameters [2]  

(Dk(@, $1. cos k 5 )  = [ ) z  [)$I' d cos @%,(0, $) cos ktf(0, ICI, z), (2) 

where D&(0,$) are Wigner rotation matrices of rank L, d is the smectic structure 
period, 5 = 2nz /d  and z is the translational coordinate of the centre of mass of a solute 
molecule along the axis zllr. The index L>O takes even values, the index In1 < L takes 
zero and even values, the index k takes integer values. The single particle distribution 
function f(Q, z) is subject to the normalization constraint 

sii=(3cos20ir-1)/2, (i=xlylz,). (1) 

- 1  

s[f(Q, z )  d z  dQ = 1. (3) 

From the solute absorption dichroism of the bands studied it is possible to 
determine the following orientational order parameters of the solute [3-51 

s=s,,,, = (D&J = (P,(cos 0)) = ( P 2 ) ,  } (4) 
G=S,,,,-S,,, ,=(3/2)1'2(D~,,+D~, - , )=3( s in2@cos2~) /2=(~) ,  

where P,(cos 0) is a second Legendre polynomial. The translational order parameters 
zk = (cos k t )  can be found from X-ray scattering data [6 ] .  As the amplitudes of smectic 
harmonics for real smectic A phases with k >  1 are negligible according to the 
experiment [7] consideration can be restricted to z, = z [S] .  Finally, orientational 
ordering in all known smectics requires the mixed order parameters 

O= ( P 2  cos t), K =  (DCOS t) 
to be taken into account. From experimental information about some of the order 
parameters in equation (2) the best approximation for the real distribution function is 
the function f(Q, z), which maximizes the informational entropy functional [9, lo] 
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Ordering and spectral properties of smectic A 557 

taking into account equations (3) and (4). At known values of S, G, CJ, IC and t the 
maximum of the functional corresponds to 

f(Q, z) = exp [ I p P 2  +ADD +I ,P2 cos 5 + I K D  cos 5 + I ,  cos t]/Z, (6) 
where the normalization factor Z is found from equation (3). The Lagrange multipliers 
I ,  are the solution of the system of equations 

For uniaxial solute molecules at G = IC = 0 and I, = A, = 0 equation (6) transfers to the 
one obtained before [l] and coincides with the trial functionf(i2,z) used in Ell]. 

To characterize the statistical properties of orientational-translational molecular 
ordering and to describe the spectral properties of the solute besides the average values 
of the order parameters the following differences are important 

which can be presented as 

d2 In z 
an; ’ kl- an,an, ’ A -- (k ,  I = P, D,  CJ, IC, T )  

a2 In z 
A,=---. (9) 

using equations (2), (6) and (7). 
Let us find the complete range of the changes in the parameters I,, A, and Akl. The 

orientational order parameter S of solute molecules in a solvent can change within the 
interval O <  S < 1; this corresponds to changing I, within the interval O<Ap< 03. The 
parameter G characterizes the biaxiality of the tensor ŝ  (cf. equation (1)) and is caused 
by the hindered rotation of solute molecules around their longitudinal axis zl. As 
Tr s^= 0, so in the frame (S; G) with S ,  G 2 0 all physically possible values of G are within 
the triangle [12-141 with the apex coordinates (0; 0), (0.25; 0-75) and 1; 0). The abscissae 
corresponds to rod-like molecules. The line segment G = 3s between the points (0; 0) 
and (0.25; 0.75) corresponds to disc-like molecules with S,,,,  = S,, , , .  This asymptote 
corresponds to the dependence K = 3a. The line segment G = 1 - S between the points 
(025; 075) and (1; 0) corresponds to biaxial molecules with a common shape with 
S,,,, = - 1/2 and rotation around the z1 axis being absent. The values G<O are 
placed within the triangle made by the reflection of the one just considered relative to 
the axis of abscissae S.  

These restrictions on G do not depend directly on the presence or absence of 
translational molecular ordering, which only modifies the trajectories G(S) owing to the 
presence of the non-zero parameters I, and I, in equation (6) but does not influence the 
asymptotic value of ID/Ap, which corresponds to the sides of the orientational triangle. 
So it is possible to determine this asymptotic value of I,/&, for the particular case of an 
uniaxial nematic matrix within the limit of large values of S and small values of G. Being 
restricted to the expansion terms, which are sufficient to determine the asymptote G(S), 
from equation (6) we find 
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558 E. M. Averyanov and A. N. Primak 

Using equations (7) and (10) gives 

and 
G=-( l -S ) .  I D  

A, 
This means that the sign of G coincides with the sign of 1,. At fixed S the maximum 
value G = 1 - S corresponds to the side of the orientational triangle and agrees with 
equation (12) at AD=&.  So the physical possibility of changing I D  for G>O is 
determined by the interval O<I,<1,. It should be noted that the maximum entropy 
method cannot directly make any predictions for the inter-relations of the various 1, in 
equation (6) [l5]. Nevertheless, limiting values of the parameters 1, and A, can be 
determined using the additional condition Tr s^=O and the dependences G(S) on the 
sides of the orientational triangle (see the Appendix). 

The difference A, describes the non-uniformity of the angular distribution of 
longitudinal molecular axes in a sample relative to the director. The value 

1 / 
Ap=-( l -S )  

I ,  
found from equations ( 9 H 1 2 )  does not depend on the sign of I D .  The differences AD and 
ApD characterize the correlation between the angular distribution of the longitudinal 
molecular axes z ,  relative to the director and the angular distribution of the transverse 
axes x, and y, relative to the planes zlr. From equations ( 9 H 1 2 )  we obtain the equality 
AD = A,, independent of the value of &,/Ap At I ,  = I ,  this equality is valid within the 
region 0.25 < S < 1 as it follows from equation (8) when D = 1 - P ,  is substituted into the 
equation for AD From equations (9H12) it also follows that 

APD= - ADAP/AP> (14) 
i.e. the sign of ApD is opposite to the sign of I D  and the asymptotic value ID=,?,, 
corresponds to the equality ApD = - A, being valid within the region 0-25 < S 6 1. 

The remaining differences Ak, (cf. equation (8)) characterize correlations between 
non-uniformities of orientational and translational molecular distributions in a 
sample. At 0 2 5  6 S < 1 and I ,  = I ,  substituting D = 1 - P ,  into equation (8) gives the 
following correlations 

and within this limit A,, and Apa are the independent orientational-translational 
differences. Relative values and signs of APa and ApK can be determined by neglecting 
the correlation of orientational and translational distributions in equation (9). Then 
APr=O and at AD=& the correlations 

Apa = ADK = APT, ApK = ADa = ApDz = - APT (16) 
are valid. As the value of z can be compared with unity, so at A, = 1, the values of Apa 
and lApKl can be compared with Ap. 

The connection of the parameters I k  in equation (6) with solute and solvent 
molecular properties can only be determined within the framework of a molecular 
statistical theory of a smectic A phase with biaxial solute molecules. 
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Ordering and spectral properties of smectic A 559 

3. The positional-orientational pseudopotential in a smectic A formed of 
biaxial molecules 

A starting point of a molecular statistical theory is the choice of the form of the pair 
interaction potential %12(r12, Q,,) for molecules 1 and 2, which depends on the radius 
vector r12 connecting the centres of mass of these molecules and the Euler angles 
R12(q12812$12) determining the transition from the frame of molecule 2 to that of 
molecule 1. In the McMillan model [8] for a pure smectic A composed of uniaxial 
molecules the pair potential %lz(lrlz~, el,) was assumed to have the form 

where ro is the effective interaction radius having the value of order of the molecular 
aromatic core length, n is the molecular concentration in the sample. The parameter V, 
characterizes the strength of the anisotropic part of the intermolecular interaction and 
the parameter 6 determines the relative contribution of its isotropic part. The 
molecular statistical theory developed on the basis of equation (1 7) with corresponding 
choice of the parameters gives a good qualitative and sometimes quantitative 
description of the behaviour of real smectics [7,8,16-18]. It shows that equation (17) 
reflects the main features of the interaction of uniaxial molecules in a smectic A phase. 

However, real mesogenic or solute molecules are biaxial and the available 
experimental data [3,19-211 make evident the correlation between translational 
ordering of biaxial molecules and their rotational mobility relative to the longitudinal 
axis zl. Thus a molecular biaxiality has to be reflected by the form of the potential %12. 

When the Maier-Saupe theory [22] developed for uniaxial nematics composed of 
uniaxial molecules is generalized to biaxial molecules [20,23,24], the change of the 
molecular shape is concerned with the change of the orientational dependence of the 
potential @12 and the possiblemodification ofits dependence %!12(r12)is not taken into 
account. The correlation of the theoretical and experimental dependencies G(S) for 
solvent and solute biaxial molecules [3,4,5,19,23-261 verifies this supposition. So the 
possible generalization of equation (17) for biaxial molecules is the following 

, 

To start with we consider a pure smectic A when the parameter ro is the same for all 
pairs of molecules. The expansion of @ ( Q 1 2 )  in a complete set of basis functions [27] is 

where the expansion coefficients are 

The summation in equation (19) is made for L> 0 and - L< p ,  q d L and is restricted to 
even L for apolar mesophases. The restrictions on p and q indices are concerned with 
the symmetry of molecules 1 and 2. If both molecules have CZv, D, or DZh symmetry 
indices p and q take zero and even values only and the relations uLpq=uL-pq=uLp-q  
- - u L - p - q  are valid. 
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560 E. M. Averyanov and A. N. Primak 

To obtain the equation for the mean field potential affecting molecule 1 we 
average equation (18) over positions and orientations of all surrounding molecules 

where N is the total number of molecules being averaged. The magnitudes ri and Q, 
determine the position and the orientation of molecule i in the laboratory frame (xyz), 
the z axis is normal to the smectic layer planes and coincides with the director,f(r, Q) is 
the single particle distribution function of mesogenic molecules. Within a smectic layer, 
which is a two dimensional liquid, the function f(r, SZ) does not depend on the xy 
coordinates. So averaging the spatially dependent part of the potential 9LIz can be 
divided into two steps, first in the xy plane and then over the coordinate z,. To average 
within a layer we use the radial distribution function g(r,) of a molecule in the smectic 
layer xy plane with properties: g(r,) = 0 if r f  =(XI, + y ~ , ) ( a 2  and g(r,) = 1 if rL b a [28] ,  
where a is the order of magnitude of the average intermolecular distance within a layer. 
Averaging gives 

R 1 271r,g(r1) exp (-r:/r;)  dr, 71r; 

j: dr,Pnr,dr,  

exp (- z?&) = ran- '1' [Iexp ( - r;t2/4) cos (zl ,t) dt .  

0 = - exp ( - a2/r;), (22) Q (exp (- r:/r& = 

where at R>>a the area Q xzRZ. For the integration over z ,  it is convenient to write 
exp ( -  z?,/rg) in the Fourier integral form 

(23) 

For a smectic A phase with biaxial molecules the most general form of the 
distribution function f(z, 0) is [ 2 ]  

(24) 
271k 

f(z,Q)= /i,,,kD&(Q)cos-Z, 
L'nk d 

where the coefficients are 

A 

The summation in equation (24) is made over even L' 30, zero and even In[ < L', and 
integer k 2 O .  To carry out the integration over angles R, we use in equation (19) [27] 

D ; q ( w  =I Dg*(Q,)Dyq(Q1). (26) 
j 

Substituting equations (19), (22H24)  and (26) into equation (18) and carrying out the 
integration over spatial and angular variables gives 
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Ordering and spectral properties of smectic A 56 1 

Based on the arguments presented in section 2 the summation can be restricted to 
values L’= 2; p ,  q =0, t- 2; k =0, 1. Then using equation (25) and taking into account 
N = nQd and the requirement of self-consistency we find 

q e , $ , z ) =  - V ~ / , C ( S + ~ , G ) P , + ~ ( I S + I , ~ ) P , ~ ~ ~  4 

+ ( ~ l S + 1 2 G ) D + o r ( ~ l ~ + 1 , ~ ) D c o s ~ + a 6 z c o s ~ ] ,  (28) 
where the following definitions 

Vo = uzo0 exp C- a’/rX], a = 2 exp [ - ( ~ r ~ / d ) ~ ] ,  ) 

are used. For uniaxial molecules = ,I2 = O  and at a=O equation (28) reduces to that 
obtained by McMillan [8]. With IS = K = z = O  equation (28) reduces to that obtained in 
[23,24] for pure nematics with biaxial molecules. 

The single particle distribution function f(O,+,z) has the form 

f(e, vk 4 = exp C - W W , z ) / k T l / Z  (30) 
and its dependence on the molecular coordinates coincides with that obtained within 
the framework of the other approach (cf. equation (6)). Comparison of equations (6) and 
(28H30) allows us to write for a pure smectic A 

these determine the connection of the parameters Ak (cf. equation (6)) with the molecular 
interaction parameters, order parameters and molecular characteristics. 

A molecular biaxiality is manifested in the parameters uLpq (cf. equation (29)), which 
characterize anisotropic intermolecular interactions of rank L. For the important 
particular case of the factorization 

(32) - a  y\2.4’ G P ) ,  
U L p q -  12 Y 2  

which is valid for anisotropic dispersion interactions [23,24], the parameters uZpq are 
expressed through the irreducible components y ( ’ v r n )  of the polarizabilities of the 
interacting molecules. For pure liquid crystals y1 = y2 = y and the correlations 1, =A;, 
I ,  = 1: and 

are valid, where j f = ( y x I x ,  +yyIyI  +y,,,,)/3 is the average value of the molecular 
polarizability. In this case we obtain = 1,/1, = A1. The largest value 1, = 1 
corresponds to disc-like molecules with yxlxl = y,,,, that agrees with the limiting values 
of the ratios LD/AP and 1,/1, obtained from the analysis of the orientational triangle. In 
the absence of correlations between orientational and translational ordering we obtain 
&/Ap = &/AD = az. For pure liquid crystals the experimental dependences G(S) 
correspond to the values A1 %0.1-0.2 and G<<S [23,25,29, 301. Moreover, a 5  1 and 
z < 1 are valid [8, 181. So we can write the following chain of the probable inequalities 
AP>>AD=Lu>>IK.  
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562 E. M. Averyanov and A. N. Primak 

The molecular field pseudopotential for the solute in a smectic A at low solute 
concentrations can be found by analogy with the case of pure liquid crystals if we 
consider molecules 1 and 2 to be solute and solvent molecules, respectively. In this case 
the restrictions on the indices n and p in equations (24), (25) and (27) are determined by 
the solvent molecule symmetry and the restriction on the index q in equation (27) by the 
solute molecule symmetry. The parameter r$-, in equation (18) now plays the role of 
the effective interaction radius between solute and matrix molecules. In the absence of 
interactions between solute molecules tfPM can be taken as (ro + rOs)/2, where the 
parameters ro and ros have values of the order of aromatic core length for the solvent 
and solute molecules. Then for the solute the parameter us- ,  in equation (33) has 
the form 

uS-,=2exp [I -(.tf-'/d)2]=2(a/Z)1[('+ 1)/212, (34) 

where t = ros/ro, and changes within the interval 0 6 as- ,  d 23/4a1'4. 
Let solute and solvent molecules have a symmetry not less than CZvr D, or D2k 

Then using the same terms of the expansion (cf. equation (27)) and taking into account 
the self-consistency requirement we can obtain for the mean field potential of the solute 
subsystem in a smectic A matrix the expression 

as(o ,$ ,Z)=  - I/,[(S,+~,G,)P2+a,-,(a,+~,lc,)P~cos 5 
+ (21 SM + I,G,)D + %s - ~(x1 OM + A2lcM)D cos 5 + as - ~ 8 s  - MTM cos 53, (35) 

where the index M indicates the corresponding order parameters of the matrix. Here 
the parameters A l ,  Xl and A2 are determined by equation (29), where the coefficients uLpq 
depend on the properties of the solvent and solute molecules. For the nematic phase 
equation (35) coincides with that obtained in [YZO]. In the smectic A phase at high values 
of S ,  the inequalities GM<<SM and tiM<< aM are valid with I ,  < 1 in equation (35). So the 
corresponding terms in equation (35) can be neglected and the expression 9?&8, $, z )  
reduces to that of biaxial solute molecules in a smectic A composed of uniaxial 
molecules 

and comparison with equation (6) gives 

I 
In the absence of correlations between orientational and translational ordering of 
solvent molecules Aa/A,, = As/&, = C L ~ - ~ T , .  For the solute the parameter Xl can take any 
value within the interval 0 < X1 < 1, where the maximum value corresponds to disc-like 
solute molecules. 
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Ordering and spectral properties of smectic A 563 

The parameter h S - ,  characterizes the translational ordering tendency of solute 
molecules independent of their orientational ordering. For uniform aromatic solute 
molecules the inequality SS- ,  < 6 can be expected. On the other hand the parameter 
6 < 1 corresponds to real smectics A [S, 17,181, so it is possible to expect 6,-,<< 1. 
Taking into account that a s - ,  5 1 [8, 181 and z, < 1 we have I,<< 1 in equation (38) and 
the last term in the brackets in equation (36) can be neglected. As a result we find 

@ ~ ( O , $ , Z ) =  - V~(SM+~~-MG,COS<)[P~ +(2/3)”21D], (39) 
where the parameter Iz  = (3/2)1’2X1 defined in [ 19,20,24] is used. The dependences 
G(S), . . , , z(S) and Akl(S) calculated using equations (37) and (39) for values of the 
parameters S,, CT,, A and as- ,  are presented in [31]. 

4. The static shift and splitting of polarized solute absorption bands in a smectic A 
For low solute concentrations and solute absoprtion bands far from those of the 

solvent, the solute spectrum shift at the isotropic-liquid crystal transition is determined 
only by the static solute-solvent interaction. For a biaxial solute in a smectic A the 
static shift Av(6, $, z)  = vo(O, $, z)- vi of the absorption band maximum relative to its 
position vi in the isotropic phase depends on the orientational and translational 
coordinates of the solute molecule and can be expanded in a complete set of basis 
functions, which reflect the symmetry properties of the liquid crystal and solute 
molecules 

This summation is made over even values L 2 0, even values In1 d L and integer values 
k 2 0, with the term LF n = k = 0 being included in vi. To explore the features of the 
influence of molecular biaxiality on the solute’s spectral properties the summation in 
equation (40) can be restricted to terms with L<2. The consideration of the 
translational ordering of the solute can be restricted to the value k =  1, with good 
accuracy. Then taking into account & Z Z k  = &2 - 2k gives 

+coo1 cos 0. (41) 

The coefficients cLnk in equation (41) depend on the matrix order parameters 
(Dtn  cos k t ) ,  and vanish at the transition to the isotropic liquid. As the orientational 
and translational ordering of solute molecules is a consequence of the corresponding 
ordering of solvent, so to a first approximation equation (41) can be written as 

Vo(Q, Z) = Vi  - S,(AP2 + BD) - OM COS t (cP2 + ED) - T# COS 5, (42) 
where the coefficients A , .  . . , F are weakly dependent on temperature [3]. 

The absorption band shape D(v, 6, $, z )  of a solute molecule does not depend on the 
solvent phase to a first approximation, but the maximum position vo(O, $, z) of this 
band depends on it according to equation (42). The spectral distribution of the optical 
densities gI,, I(v) in the solute band components polarized parallel and perpendicular 
to the director is given by [14,32] 
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where k is a constant, p is the density, nll ,I andfll,  are the background values of the 
refractive indices and the local field tensor components of the light wave within the 
absorption band studied; $(Q) is the solute absorption band intensity with 
components 

f l i  = 1 +2P2S,9+$DGg,, $I= 1 -P,S,-$DG,,. (44) 

Here the designations S, = (3 cos2 f l -  1)/2, G,, = (3 sin’fl cos 240)/2 are used, where f l  is 
the angle made by the electronic transition moment p with the z1 axis of the solute 
frame, q is the angle made by the x1 axis of this frame with the projection of p onto the 
xlyl plane. 

If the solute absorption band is far from that of the solvent, which gives the main 
contribution to the background values all, I andfi, ,I at small solute concentration, the 
dispersion of these magnitudes can be neglected. So equations d 9  11, .(v)/dv = 0, which 
determine the maximum positions vli, I of the polarized components 9 i(v) of the 
solute band reduce to 

(45) 

Expanding the derivative 9 ’ ( v ,  Q, z )  in a power series in (v - vo) near v = vo (cf. equation 
(42)) and using the linear approximation valid for uniaxial and biaxial solute molecules 
in a nematic [3,33] the solution of equation (45) is found to be 

with the result for v I I  being made by the substitution of -2S, and -2G,, for S,  and 

Thus the static anisotropic solute-solvent interaction results in a shift and splitting 
of the solute absorption polarized bands, which depend on the features of structural 
and statistical properties of the liquid crystal and the electronic structure of the solute 
molecules in different ways. The shift of the doublet centre of gravity is described by the 
first three terms in equation (46) and is determined by the solute and solvent order 
parameters but does not depend directly on the parameters S ,  and GPq. The band 
splitting is described by the fractional terms in equation (46) and depends essentially 
both on the solute differences and the parameters S ,  and GI,. For uniform 
orientational and translational ordering of solute molecules in a sample all of the 
differences vanish and the static splitting of the solute bands is absent independent of 
both the solvent and solute ordering and of the electronic structural features of the 
molecules. Thus the static band splitting is concerned with the specificity of a liquid- 
crystalline state as a partially ordered system. On the other hand for the transitions 
with S,=G,,=O the band splitting is also absent independent of the features of the 
orientational-translational distribution of the solute. 

GP,. 
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Ordering and spectral properties of smectic A 565 

In the absence of the correlation between orientational and translational ordering 
equation (46) reduces to 

V i  = Vi  - SM[(A + CZMT)S ( B  + ETMT)G] - F T M T  

This equation differs from the analogous one for the nematic [14] only by the 
renormalization of the coefficients before Ap, AD and A,, and by the additional shift of 
the doublet centre of gravity in the smectic phase. For A = C, B = E and the rest of the 
conditions being equal the splitting Av = v I I  - vi of solute bands in nematic (Av,) and 
smectic (Avs) phases are connected by the relation 

A v ~  = Av,( 1 + T M T ) .  

By analogy we found 
(v; - V)s = (vi - U)N( 1 + ZMT) + F T M T  

for the shift vi-V of the doublet centre of gravity V. From here we can see, that the 
layering effect is small for typical thermotropic smectic values zM = z z 0.3 [S] but it can 
become noticeable in specially prepared layered structures with high values of T~ and z, 
e.g. in Langmuir-Blodgett films [34,35]. 

The absorption band splitting Av = v , ,  -vL calculated using equations (37), (39), (46) and (47). 
Av-the calculation using equation (46); Av,-using equation (47); Av,-using 
equation (47) at z,=z=O. For all cases S,=O.6; z,=0.3; a,=0.18; a,-,=0.415; 
A = C = F = 200cm- l; B =  E.  

PI0 Ppi” a S B/A Avlcm Av$cm - Av&m 

0 

0.3 

0.5 
0.6 

0.3 

0.9 
0.6 

0.3 

0.5 
0-6 

90 0 
0.3 

0.9 
0.6 

0 5  
- 0.5 

0.5 
- 0.5 

0.5 
- 0.5 

0 5  
- 0 5  

0.5 
- 0.5 

0.5 
- 0.5 

0.5 
- 0.5 

0.5 
- 0.5 

- 62 - 59 - 58 
- 93 - 90 - 89 

- 47 - 42 - 40 
- 88 - 83 - 80 

- 50 - 48 - 47 
- 112 - 109 - 107 

- 44 - 39 - 36 
-113 - 110 - 101 

23 21 21 
106 105 103 

37 32 31 
103 99 95 

34 33 32 
118 117 115 

43 39 36 
121 118 109 
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To obtain numerical estimates using equations (37), (39) and (46) we have to choose 
probable values for the available parameters. For n-n* electronic transitions in planar 
molecules we should consider the two limiting cases of transitions polarized along the 
axes z1 (p=OO) and x1 (p=90°, cp=O"). To illustrate the influence of molecular 
biaxiality on spectral properties the values A = 0.5 and A =0.9 can be taken. The first of 
these is within the interval A = 0-3-0.7 and is valid for a biaxial solute of the anthracene 
type in nematic and smectic phases [3,19]. The value A=O-9 is interesting to see what 
the biaxiality growth may result in. At SM=06; r,=O.3; 0,=0.18 being typical for 
smectic A phases the values =0.415; S =0.6 and 0.3 reflect the possible correlation 
of the orientational and translational ordering of solvent and solute for r O s N  ro 
[3,19,21]. According to available experimental data for anthracene in different 
matrices [3,36,37] the ratio B / A  changes on average from -0.5 to 0.5 with the typical 
value A =200cm-'. To estimate the maximum contribution of the layering effect we 
take A = C = F  and B = E .  

The results of the calculation using equations (37), (39), (46) and (47) are presented in 
the table. The values of the splitting correspond to those observed experimentally 
[3,37]. The sign of Av is determined by the angle B. For B=o" Av<O and for p=90 
Av > 0. For the same remaining conditions the values of IAvl for p= 0 and 90" are close 
to one another. The sign of the parameter B influences the value of Av more strongly 
than the parameter A. The correlation of the values of Avs and Av, presented in the table 
is described by equation (48); their difference is not more than 10 per cent. Taking into 
account orientational-translational correlations gives the additional increase of Av in 
comparison with Avs and the general contribution of smectic ordering to the value of Av 
makes up 20 per cent, that is in quantitative agreement with the experimental data [3]. 

5. Conclusion 
The structural and spectral apsects can be pointed out as a result of the present 

investigation. The former is concerned with the general problem of the structural 
description of partially ordered molecular media composed of molecules with arbitrary 
shape. Smectic A phases are a simple and common enough model for such media with 
two main ordering types: uniaxial orientational and unidimensional translational. The 
analysis of spectral properties of these shows, that to describe their structure it is 
necessary to use not only average values of the order parameters (cf. equation (S)), but 
also the uniform and mixed differences (cf. equation (9)). It is obvious, that these 
differences have also to be manifest in other physical properties of smectics, which 
depend on the non-uniformity of the orientational and translational molecular 
distribution and on the correlation of these ordering types. The spectral aspect is that 
the relative contribution of orientational and translational molecular ordering to 
spectral properties of the mixture as well as the role of the correlation between these 
ordering types have been solved. The orientational molecular ordering has been shown 
to make the dominant contribution to the static shift and to the splitting of the 
polarized bands of a solute electronic absorption, that is in agreement with the 
available experimental data. 

Appendix 
To obtain the asymptotic value ,IK/& corresponding to the orientational triangle 

sides the limit of weak orientational and translational ordering of the solute can 
be considered, when all the parameters Ak in equation (6) are small. Expanding 
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the 

find 
(m + 

exponent in equation (6) and I n 2  up to terms of order A ~ A ~ A ~ A ~ A ~  with 
- n + k + 1 + q)  = 3 and making the integration over angular and spatial variables we 
the following approximate equations 

S=" + L 1 2 _ 3 1 2 + 2 4 2 _ 3 ~ 2 + L A  1 

fJ=q 10 0 + L A  35 P 1 0 -A' 35 D 1 rc+&ilP1?> 

K = A '  _- 

5 P 35 P 35 D 70 0 7 0  K 10 c 71 

G = - & 1 p 1 ~  - &l,nK -k &AK&, 

10 K 335'P& - &AD', +&ADA?? 

=$A7 + &dpA, + &ADAK. 

From the first pair of equations we can see that the asymptotic correlation G = 3s 
within the interval 0 d S d0.25 is valid only for ; Ip  = AD and 1, = ,IK. The same result can 
be obtained from the next pair of equations for the correlation K = 30. So for G 2 0 the 
parameter 1, changes within the interval 0 d 1, d 1,. The correlation between the 
parameters 1, and 1, can be only determined within the framework of a molecular 
statistical theory for a definite molecular model. 
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